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Abstract

A mathematical model is developed for predicting the thermal performance of a flat micro heat pipe with a rectangular grooved wick
structure. The effects of the liquid–vapor interfacial shear stress, the contact angle, and the amount of liquid charge are accounted for in
the present model. In particular, the axial variations of the wall temperature and the evaporation and condensation rates are considered
by solving the one-dimensional conduction equation for the wall and the augmented Young–Laplace equation, respectively. The results
obtained from the proposed model are in close agreement with several existing experimental data in terms of the wall temperatures and
the maximum heat transport rate. From the validated model, it is found that the assumptions employed in previous studies may lead to
significant errors for predicting the thermal performance of the heat pipe. Finally, the maximum heat transport rate of a micro heat pipe
with a grooved wick structure is optimized with respect to the width and the height of the groove by using the proposed model. The
maximum heat transport rate for the optimum conditions is enhanced by approximately 20% compared to existing experimental results.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Flat micro heat pipes have emerged as a reliable
approach for cooling high-heat-flux electronic devices such
as computer chips and thyristors. The International Tech-
nology Roadmap for Semiconductors 2005 [1] predicted
that the allowable maximum power for high performance
devices would exceed 300 W. Cao et al. [2] noted that heat
fluxes generated by metal-oxide semiconductor-controlled
thyristors are already in the range of 100 W/cm2 to
300 W/cm2. As the power density of critical electronic com-
ponents increases, heat pipes with improved thermal per-
formance are called for. In order to enhance the thermal
performance of the heat pipe, it is necessary to identify
and better understand the phenomena that govern its per-
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formance, and to optimize the wick structure of a micro
heat pipe.

Many investigations have been conducted to character-
ize the thermal performance of micro/miniature heat pipes
used for chip/module-level cooling of electronics. For pre-
dicting thermal characteristics of heat pipes with various
cross-sectional and groove shapes, many researchers have
suggested simplified one-dimensional theoretical models
based on the differential form of the Laplace–Young equa-
tion [3–8]. In order to facilitate the analysis, these models
employ many simplifying assumptions. First, evaporation
and condensation are assumed to occur uniformly in the
axial direction. Second, it is assumed that neither evapora-
tion nor condensation occurs in the adiabatic section inside
the heat pipe. Finally, the wall temperature is either
assumed to be constant or its variation excluded from the
analysis. These simplifying assumptions have good applica-
bility to typical small heat pipes. Kim et al. [3] showed that
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Nomenclature

A dispersion constant (J)bA constant in Eq. (28)
a coefficient defined in Eq. (21)bB constant in Eq. (28)
b coefficient defined in Eq. (21)
D depth (m)
Dh hydraulic diameter (m)
fRe Poiseuille number
H height (m)
h heat transfer coefficient (W m�2 K�1)
hfg latent heat of vaporization
K curvature (m�1)
k thermal conductivity (W m�1 K�1)
L length (m)
l length of the extended meniscus region (m)
M molecular weight (kg mol�1)

_m00 mass flux (kg s�1 m�2)
N total number of grooves
P perimeter (m)
p pressure (Pa)
pd disjoining pressure (Pa)
Q heat transport rate (W)
Q0 heat transfer rate per unit length (W m�1)

q00 heat flux (W m�2)
R universal gas constant (J mol�1 K�1)
rc capillary radius (m)
S groove width (m)
s coordinate parallel to the groove wall (m)
T temperature (K) or fin thickness (m)
t wall thickness (m)
u velocity (m s�1)
V averaged interfacial velocity (m s�1)
Vl molar volume of the liquid (m3 mol�1)
w velocity (m s�1)
x coordinate along the heat pipe (m)

Greek symbols

a groove wall inclination angle
d liquid film thickness (m)
C mass flow rate (kg s�1)
c solid–liquid contact angle
g coordinate normal to the groove wall (m)
l dynamic viscosity (Pa s)
m kinematic viscosity (m2 s�1)
q density (kg m�3)
r surface tension coefficient (N m�1)
r̂ accommodation coefficient
s shear stress (N m�2)

Subscripts

a adiabatic section
amb ambient
b liquid block
c condenser
cap capillary
e evaporator
f fluid
i interface
in input
ini initial
l liquid
m mean
max maximum
men meniscus region
min minimum
r remainder
s solid
sat saturation
t total
thin evaporating thin film region
v vapor
w wall
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the temperature difference between the evaporator and
condenser sections was less than 1 �C from their experi-
mental results for 300 mm long heat pipes with outer diam-
eters of 3 mm and 4 mm. However, as the size of a heat
pipe decreases, the simplifying assumptions may lead to
significant errors for predicting the thermal performance
of the heat pipe. Hopkins et al. [4] experimentally showed
that a 120 mm long flat heat pipe with an inner hydraulic
diameter of 900 lm had a temperature drop from the evap-
orator to the condenser end cap of 25 �C at a heat load of
100 W. This suggests that the axial variations of the wall
temperature and the evaporation and condensation rates
should be taken into account to accurately predict the ther-
mal performance of a micro heat pipe.

In the present study, a mathematical model is developed
for accurately predicting the thermal performance of a flat
micro heat pipe with a rectangular grooved wick structure.
The effects of the liquid–vapor interfacial shear stress, the
contact angle, and the amount of liquid charge are included
in the proposed model. In particular, the axial variations of
the wall temperature and the evaporation and condensa-
tion rates are considered by solving the one-dimensional
conduction equation for the wall and the augmented
Young–Laplace equation for the phase change process.
In order to verify the model, the model predictions are
compared to several existing experimental data. Using the
results obtained from the proposed model, the validity of
the simplifying assumptions employed in previous models
is assessed. The effects of the amount of liquid charge
and the axial wall conduction on the thermal performance
of the heat pipe are also investigated. Finally, using the
model developed, the maximum heat transport rate is
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obtained and maximized to achieve optimal thermal per-
formance from a flat micro heat pipe with a rectangular
grooved wick structure.
2. Mathematical model

2.1. Governing equations

The system considered is a flat micro heat pipe with a
rectangular grooved wick structure, as shown in Fig. 1.
The governing equations are derived under the following
assumptions: (i) one-dimensional steady incompressible
flow along the length of the heat pipe; (ii) one-dimensional
temperature variation in the wall of the heat pipe along the
axial direction; and (iii) negligible convection in the liquid
and vapor phases. In order to formulate the governing
equations, the heat pipe is divided into a series of small
control volumes ( CV) of length dx. The continuity equa-
tions for the liquid and vapor regions are expressed as
follows:

V v; iP v; i � Av

duv

dx
¼ 0; in the vapor region ð1Þ

� V l; iP l; i � Al

dul

dx
¼ 0; in the liquid region ð2Þ

qvV v; iP v; i ¼ NqlV l; iP l; i ð3Þ

where Vv,i, Pv,i, Av, and uv, denote the averaged interfacial
velocity (normal to the liquid–vapor interface), the perim-
eter at the liquid–vapor interface, the cross-sectional area,
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Fig. 1. Schematic diagrams of the flat heat pipe considered with a
rectangular grooved wick structure: (a) overall dimensions, and (b) cross-
sectional dimensions of the flat heat pipe.
and the axial velocity for the vapor region in N grooves,
respectively, while Vl,i, Pl,i, Al, and ul, denote the averaged
interfacial velocity, the perimeter at the liquid–vapor inter-
face, the cross-sectional area, and the axial velocity for the
liquid flow in a groove, respectively.

From mass conservation across the interface, as shown
in Eq. (3), the averaged interfacial velocity for the vapor
phase can be expressed as

V v; i ¼
NqlP l; i

qvP v; i

V l; i ð4Þ

Most previous models determined the averaged interfacial
velocity under the assumptions that evaporation and con-
densation occur uniformly in the axial direction and that
neither evaporation nor condensation occurs in the adia-
batic section [3–8]. Under these assumptions, the averaged
interfacial velocity is expressed as

V v; i ¼

Qin

qvhfgP v; iLe
; 0 6 x < Le

0; Le 6 x < Le þ La

� Qin

qvhfgP v; iðLc�LbÞ
; Le þ La 6 x 6 Lt � Lb

8>><>>: ð5Þ

However, Eq. (5) is no longer valid when the wall temper-
ature varies along the axial direction or evaporation/con-
densation occur inside the heat pipe in the adiabatic
section. Vadakkan et al. [9,10] demonstrated that there is
no ‘‘adiabatic section” inside the heat pipe based on their
numerical results. In the present model, the averaged inter-
facial velocity Vv,i is determined without invoking the spe-
cific assumptions used in previous studies, and is obtained
by solving the augmented Young–Laplace equation and
the mass flux model of Wayner et al. [11,12]. Details of
the method for handling interfacial velocity are explained
in the following section.

The conservation of axial momentum for incompressible
vapor flow is written as

�2qvAvuv

duv

dx
� ðsv; wP v; w þ sv; iP v; iÞ � Av

dpv

dx
¼ 0 ð6Þ

where sv,w and sv,i are the wall and interfacial shear stresses
in the vapor region, respectively. Since the present model is
one-dimensional, information about the wall and interfa-
cial shear stresses is unknown. The velocity of the liquid
phase is very small in comparison to that of the vapor
phase, and so the interfacial shear stress for the vapor is
computed by assuming the liquid to be stationary [7]. For
a rectangular vapor duct, the values of the wall and inter-
facial shear stresses can be expressed using the following
equation [13]:

sv; w ¼ sv; i ¼
24lvuv

p2W 0

P1
n¼1

ð�1Þn�1

ð2n�1Þ2 tanh ð2n�1ÞpD0

2W 0

h i
1� 192

p5
W 0

D0

� �P1
n¼1

1
ð2n�1Þ5 tanh ð2n�1ÞpD0

2W 0

h ih i
ð7Þ

The conservation of momentum for the liquid flow in a
groove yields
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Fig. 2. Schematic cross-section of the liquid block region: (a) entire cross-
section, and (b) computational domain.
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dpl

dx
¼ � 2llul

D2
h; l

ðfReÞl ð8Þ

For liquid flow, the inertial effects are negligible in compar-
ison to those due to viscous losses [8]. The following corre-
lation for (fRe)l for rectangular grooves was suggested by
Schneider and DeVos [14]:

ðfReÞl ¼ ðfReÞl0

(
1þ Dh; lsv; i

llul

� 1

3ð2H=SÞ2
½1� 1:971 expð�pH=SÞ�

)
ð9Þ

where (fRe)l0 corresponds to the case of no liquid–vapor
interaction.

ðfReÞl0 ¼
8ð2H=SÞ2

ð1þ 2H=SÞ2 1
3
� 64

p5ð2H=SÞ tanhðpH=SÞ
h i

In the present study, axial variation of the wall temperature
is taken into account. In many previous models, the wall
temperature is either assumed to be constant or not consid-
ered in the analysis [3–8]. This assumption may lead to sig-
nificant errors for predicting the thermal performance of a
heat pipe when the working fluid is overcharged, or when
axial wall conduction is relatively large. The conservation
of energy including the axial wall conduction is given as

ksAs

d2T w

dx2
� qvV v; iP v; ihfg þ q00wP w ¼ 0 ð10Þ

where ks, As, Tw, Pw, hfg, and q00w are the thermal conductiv-
ity, the cross-sectional area, the temperature of the heat
pipe wall, the outer wall perimeter of the heat pipe, the la-
tent heat of vaporization, and the heat flux at the wall,
respectively. The heat flux profiles at the wall can be ex-
pressed as follows:

q00wðxÞ ¼
Qin=P wLe; 0 6 x < Le

0; Le 6 x < Le þ La

�h½T wðxÞ � T amb�; Le þ La 6 x 6 Lt

8><>: ð11Þ

where h denotes the heat transfer coefficient for convection
between the external surface of the heat pipe and the ambi-
ent around the condenser section and is assumed to be con-
stant. The heat transfer coefficient, h, is determined from
the conditions that

R Lt

LeþLa
hðT wðxÞ � T ambÞdx be equal to

the input heat rate, Qin.
In the liquid block region of Fig. 1(a), condensation does

not occur because the vapor region and grooves are filled with
liquid. Kim et al. [3] mentioned that the liquid block acts as a
thermal barrier for condensation heat transfer due to its lower
thermal conductivity. However, heat is still transferred by
conduction from the liquid to the wall of the heat pipe. The
present model accounts for heat transfer in this region. The
heat transfer rate per unit length by conduction can be
obtained by solving the two-dimensional conduction problem
with geometry and boundary conditions shown in Fig. 2:
Q0b ¼
2N
p

klðT v � T wðxÞÞ
X1
n¼1

1þ ð�1Þnþ1

n
� cosðnpÞ

tanhðnpH=SÞ
ð12Þ

Therefore, the conservation of energy is applied over two
regions, and Eq. (10) can be rewritten as

ksAs
d2T w

dx2 � qvV v; iP v; ihfg þ q00wP w ¼ 0; 0 6 x 6 Lt � Lb

ksAs
d2T w

dx2 þ Q0b þ q00wP w ¼ 0; Lt � Lb < x 6 Lt

(
ð13Þ

The interfacial radius of the meniscus curvature is related
to the pressure difference between the liquid and vapor
by the Laplace–Young equation, which, in differential
form, is

dpv

dx
� dpl

dx
¼ � r

r2
c

drc

dx
ð14Þ
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Fig. 3. Cross-section of the characteristic element of a heat pipe with a
rectangular grooved wick structure (evaporation region): (a) cross-section
of the liquid-filled groove, (b) evaporating thin film region, and (c)
meniscus region.
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Eqs. (1)–(3), (8), (13), (14) constitute a set of five first-order
and one second-order nonlinear coupled ordinary differen-
tial equations in 7 unknowns: uv, ul, pv, pl, Tw, dTw/dx, and
rc. The boundary conditions used at the beginning of the
evaporator section are

rcjx¼0 ¼ rc;min ð15Þ
uljx¼0 ¼ uvjx¼0 ¼ 0 ð16Þ
pvjx¼0 ¼ psatðT vÞ; pljx¼0 ¼ psatðT vÞ � r=rc;min ð17Þ

T wjx¼0 ¼ T w; e;
dT w

dx

����
x¼0

¼ 0 ð18Þ

Here pv at x = 0 is taken to be the saturation pressure of
the vapor at temperature Tv. If a heat pipe is to transport
heat, a minimum capillary radius should be formed at the
beginning of the evaporator section and a maximum capil-
lary radius at the point where the liquid block starts in the
condenser section [3]. It is assumed that the maximum cap-
illary radius at x = Lt � Lb equals the hydraulic radius of
the vapor region [8], which is regarded as the convergence
condition of the capillary radius. Eqs. (1)–(3), (8), (13), (14)
are solved numerically, subject to the boundary conditions
discussed.

2.2. Determination of the averaged interfacial velocity

As mentioned above, the assumptions that evaporation
and condensation occur uniformly in the axial direction,
that evaporation occurs only in the evaporator section,
and that condensation occurs only in the condenser section
are no longer valid when the wall temperature varies along
the axial direction or when evaporation or condensation
occurs inside the heat pipe in the adiabatic section. In this
section, the method to determine the averaged interfacial
velocity is explained.

2.2.1. Evaporation region

An evaporating film on a heat-loaded surface is consid-
ered, as shown in Fig. 3a. The extended meniscus formed
on the heated wall may be characterized by three regions:
(i) the adsorbed film region, where this film cannot evapo-
rate due to the high adhesion forces; (ii) the evaporating
thin film region (the so-called micro-region), where the
major part of evaporation occurs; and (iii) the meniscus
region, where the adhesion forces are negligible and the
meniscus curvature radius is constant. In the evaporating
thin film region, a one-dimensional laminar boundary layer
approximation for the transverse liquid flow is used (see
Fig. 3b). The mass flow rate is given as

C ¼ ql

Z d

0

wl dg ¼ � d3

3ml

dpl

ds
ð19Þ

where ml and d are the kinematic viscosity and the liquid
film thickness, respectively. Following Wayner et al.
[11,12], the evaporative mass flux is modeled as a function
of the temperature and pressure jumps at the interface
according to the expression
_m00evap ¼ aðT d � T vÞ þ bðpl � pvÞ ð20Þ

where Td is the temperature at the liquid–vapor interface,
and Tv is the vapor temperature. The coefficients a and b

are defined as

a ¼ 2r̂
2� r̂

M
2pRT d

� �1=2 pvMhfg

RT vT d

� �
;

b ¼ 2r̂
2� r̂

M
2pRT d

� �1=2 V lpv

RT d

� �
ð21Þ

where r̂ is the accommodation coefficient taken to be 1, M
is the molecular weight, and Vl is the molar volume of the
liquid. The liquid–vapor interfacial temperature and the
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wall temperature are related by the one-dimensional con-
duction heat transfer equation as follows:

kl
T w � T d

d
¼ _m00evaphfg ð22Þ

As Moosman and Homsy [15] suggested, Eqs. (20) and (22)
may be combined to eliminate Td in favor of Tw:

_m00evap ¼ 1þ ahfg

kl

d

� ��1

½aðT w � T vÞ þ bðpl � pvÞ� ð23Þ

Substituting Eq. (23) into Eq. (22) yields

T d ¼ aþ kl

dhfg

� ��1

kl

T w

dhfg

þ aT v þ bðpv � plÞ
� �

ð24Þ

The continuity equation for the evaporating liquid layer is

dC
ds
¼ � _m00evap ð25Þ

Substituting Eqs. (19) and (23) into Eq. (25) yields

� 1

3ml

d

ds
d3 dpl

ds

� �
¼ 1þ ahfg

kl

d

� ��1

½aðT w � T vÞ

þ bðpl � pvÞ� ð26Þ

In the evaporating thin film region, the pressure difference
between the vapor and liquid at the liquid–vapor interface
is due to both the capillary and disjoining pressures, and is
expressed by using the augmented Young–Laplace equa-
tion [12]:

pv � pl ¼ pd þ r
d2d
ds2

1þ dd
ds

� �2
" #�3=2

ð27Þ

where the first term on the right-hand side is known as the
disjoining pressure, and the second term is the capillary
pressure, which is the product of the interfacial curvature,
K, and the surface tension coefficient, r.

Using the experimental data of Derjaguin and Zorin
[16], Holm and Goplen [17] developed an expression for
the disjoining pressure as a logarithmic function of the film
thickness as follows:

pd ¼ �qlRT d ln½bAd
bB � ð28Þ

For a water film on glass, the constants are given asbA ¼ 1:49 and bB ¼ 0:0243 [17]. However, for a water film
on copper no data is available in the literature. As an alter-
native, we used the following approach. The disjoining
pressure for non-polar liquids is expressed in terms of a
polynomial function of the film thickness in the non-re-
tarded form as [16]

pd ¼ A=d3 ð29Þ

Even though this equation is commonly used for non-polar
liquids, Wayner et al. [12] have applied it to a water film on
glass with the dispersion constant A equal to
3.11 � 10�21 J. In the model developed here, Eq. (29) is
used for determining the disjoining pressure, and the value
of A for a water film on copper is calculated based on the
Lifshitz theory [18] as A = 5.043 � 10�21 J.

In previous studies, Eqs. (26) and (27) for the evaporat-
ing thin film region were solved with boundary conditions
being [19–22]

djs0¼0 ¼ dads; d0js0¼0 ¼ 0; ðpv � plÞjs0¼0 ¼ pd;

ðpv � plÞ
0js0¼0 ¼ 0 ð30Þ

However, the resulting solution is a trivial solution:
d = dads = constant. To obtain a non-trivial solution, previ-
ous investigators specified the boundary conditions at a
point shifted away from the adsorbed film region. This
leads to arbitrary changes in the boundary conditions
and associated difficulties in the numerical treatment. In or-
der to overcome these difficulties, Eqs. (26) and (27) are
solved for the interval from the intersection of the evapo-
rating thin film and the meniscus regions (s = 0) to the
intersection of the evaporating thin film and the adsorbed
film regions (s = l) with respective boundary conditions:

djs¼0 ¼ d0; d0js¼0 ¼ � tan c;

ðpv � plÞjs¼0 ¼ rK0; ðpv � plÞ
0js¼0 ¼ 0 ð31Þ

K0 is the curvature in the meniscus region, and c is the con-
tact angle. The value of d0 is found from Eq. (29) when the
disjoining pressure is negligibly small compared with the
capillary pressure in the meniscus region: pd � 10�5r K0

at d = d0. Although the initial-value problem, Eqs. (26)
and (27) with BCs as in Eq. (31), is completely determined,
its solution must satisfy an additional condition because
the length of the evaporating thin film region is not
specified:

_m00evapjs¼l ¼ 0 ð32Þ

Once d and (pv � pl) are determined, the evaporative mass
flux and interfacial temperature profiles in the evaporating
thin film region can be obtained, respectively, in Eqs. (23)
and (24).

In the meniscus region shown in Fig. 3c, the liquid–
vapor interfacial temperature is almost the same as the
vapor temperature, and the disjoining pressure is negligi-
ble. The governing equation and boundary conditions are

d2d
ds2

1

¼ K0 1þ dd
ds1

� �2
" #3=2

ð33Þ

djs1¼0 ¼ d0;
dd
ds1

����
s1¼0

¼ tan c;
dd
ds1

����
s1¼l1

¼ tan p=2 ð34Þ

The evaporative mass flux in the meniscus region is

_m00evap ¼
kl

hfg

T w � T v

d
ð35Þ

Therefore, the averaged interfacial velocity in the evapora-
tion region can be expressed as

V v; i ¼
2N

qvP v; i

Z l

0

_m00evapdsþ
Z l1

0

_m00evapds1

� �
ð36Þ
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2.2.2. Condensation region

In the condensation region, the condensing film is
divided into two regions, as shown in Fig. 4a: (i) a thin film
region at the top of the fins and (ii) a meniscus region of
constant curvature. To analyze heat transfer in the thin film
region (see Fig. 4b), simplifying assumptions are employed.
One assumption is that the film thickness variation along
the s-axis is weak. The other assumption is that the disjoin-
ing pressure gradient along the liquid film can be neglected
in comparison to that of the capillary pressure [21]. From
s
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Fig. 4. Cross-section of the characteristic element of a heat pipe with a
rectangular grooved wick structure (condensation region): (a) cross-
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these assumptions, the governing equation and boundary
conditions for the film thickness at the top of the fins are
given as

r
3ml

d

ds
d3 d3d

ds3

� �
¼ � 1þ ahfg

kl

d

� ��1

½aðT w � T vÞ

þ bðpl � pvÞ� ð37Þ
dd
ds

����
s¼0

¼ d3d
ds3

����
s¼0

¼ 0;
d2d
ds2

����
s¼T =2

¼ 1

rc

;
dd
ds

����
s¼T=2

¼ � tan
p
2
� c

� �
ð38Þ

The boundary value problem, Eq. (37) with BCs as in Eq.
(38), is solved approximately by introducing the following
polynomial function for the film thickness [21].

dðsÞ ¼ C0 þ C1ðs� T=2Þ þ C2ðs� T=2Þ2

þ C3ðs� T=2Þ3 þ C4ðs� T=2Þ4 ð39Þ

Using the boundary conditions in Eq. (38) the values of the
coefficients can be determined as

C1 ¼ � tanðp=2� cÞ; C2 ¼ 1=2rc;

C3 ¼ 2C4T ; C4 ¼ �
C1 � C2T

T 3
ð40Þ

From the condition that the total mass flow rate must be
equal to that condensed in the region, 0 6 s 6 T/2, C0

can be also obtained.
The difference between the vapor and liquid pressures,

the condensation mass flux, and the interfacial temperature
in the thin film region are respectively expressed as

pv � pl ¼
A

d3
þ r

d2d
ds2

ð41Þ

_m00cond ¼ 1þ ahfg

kl

d

� ��1

½aðT w � T vÞ þ bðpl � pvÞ� ð42Þ

T d ¼ T w þ
_m00condhfgd

kl

ð43Þ

In conjunction with Eq. (39), Eqs. (41)–(43) completely
determine the problem.

The heat transfer problem for the meniscus region where
condensation occurs, as shown in Fig. 4c, is very similar to
that in the evaporation region, and its solution procedure
will not be repeated here. The condensation mass flux in
the meniscus region is written as

_m00cond ¼
kl

hfg

T w � T v

d
ð44Þ

Therefore, the averaged interfacial velocity in the conden-
sation region can be expressed as

V v; i ¼
2N

qvP v; i

Z T=2

0

_m00conddsþ
Z L1

0

_m00condds1

� �
ð45Þ



Table 2
Specifications of the flat heat pipes with a rectangular grooved wick
structure considered in the literature

Hopkins et al. [4] Lin et al. [5]

W (mm) 13.41 12.7
D (mm) 8.92 6.35
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2.2.3. Comparison of results from the model developed to

those from Stephan and Busse [19]

To verify the model developed here for determining the
heat transfer rates in the evaporating thin film and menis-
cus regions, a comparison is made with the numerical
results of Stephan and Busse [19] for ammonia, using the
following conditions: Tv = 300 K, ks = 221 W/m2K,
A = 2 � 10�21 J, H = 0.5 mm, T = 1 mm, t = 1 mm, rc =
909.1 lm, c = 19.7�, a = 45�, and DT = 1.31 K. The results
of the comparison are listed in Table 1. The heat transfer
rates in the evaporating thin film and meniscus regions
obtained from the present model are clearly seen to be in
close agreement with Stephan and Busse’s results.

2.3. Solution algorithm

When the flat heat pipe with a rectangular grooved wick
structure is to transport the maximum amount of heat, a
minimum capillary radius at the beginning of the evapora-
tor section is defined by the following equation:

rc;min ¼
S

2 cos c
ð46Þ

where c denotes the minimum wetting contact angle, which
is fixed for a specific working fluid/container combination
[23]. The value of c for a water/copper combination is
33� [24]. When the minimum capillary radius is given as
Eq. (46), the complete solutions for the governing equa-
tions can be obtained by determining the maximum input
heat load that satisfies the convergence condition. How-
ever, if the heat pipe is to transport a certain amount of
heat which is smaller than its maximum heat capability,
it is expected that the capillary radius at the beginning of
the evaporator section is larger than that represented by
Eq. (46). Therefore, when the input heat load is given,
the complete solutions for Eqs. (1)–(3), (8), (13), (14) can
be obtained by determining the minimum capillary radius
that satisfies the convergence condition. The entire calcula-
tion procedure is summarized as follows:

When the heat pipe transports the maximum possible

amount of heat:

(1) Determine rc,min using Eq. (46).
(2) Assume an initial value of Qin in Eq. (11) and the wall

temperature at x = 0.
(3) Solve the governing equations, Eqs. (1)–(3), (8), (13),

(14), using the fourth-order Runge–Kutta method.
Table 1
Comparison of the heat transfer rates obtained in the present study with
those from [19]

Stephan and Busse [19] Present study

_qin (W/cm2) 3.0 3.2
Qthin (W/m) 13.5 14.1
Qmen (W/m) 16.5 18.0
Qthin/Qmen (%) 45 43.9
(4) From 0 to x, calculate the total mass of the liquid in
the grooves, ml, and the vapor, mv. Assume the
remainder of the inner volume of the heat pipe is
filled with liquid of mass mr.

(5) If the overall mass balance condition, ml + mv +
mr = mini, is not satisfied, increase x to x + Dx and
return to step 3.

(6) If the overall mass balance condition is satisfied at a
given value of x, calculate the liquid block length
using Lb = Lt � x, and then solve the energy equa-
tion, Eq. (13), in the liquid block region. If the overall
mass balance condition holds but the wall tempera-
ture gradient at x = Lt is not zero, change the wall
temperature at x = 0 (if dT w=dxjx¼Lt

< 0, increase
the value of Tw(0) and if dT w=dxjx¼Lt

> 0, decrease
the value of Tw(0)) and return to step 3.

(7) If both the mass balance condition and the wall tem-
perature gradient condition at x = Lt are satisfied,
check the convergence criterion. If the convergence
criterion fails (rc(x = Lt � Lb) 6¼ rh,v), change Qin (if
rc(x = Lt � Lb) < rh,v, increase the value of Qin and
if rc(x = Lt � Lb) > rh,v, decrease the value of Qin)
and return to step 2.

(8) If the mass balance condition, the wall temperature
gradient condition at x = Lt, and the convergence
condition are all satisfied, regard Qin as the maximum
heat transport rate, Qmax, for the given minimum
capillary radius and the specified working
temperature.

When the heat pipe transports a specified amount of heat,
Qin < Qmax:

(1) Specify a value of Qin in Eq. (11).
(2) Assume a minimum capillary radius, rc,min and the

wall temperature at x = 0.
(3) Solve the governing equations, Eqs. (1)–(3), (8), (13),

(14) using the fourth-order Runge–Kutta method.
W0 (mm) 4.875 5.13
D0 (mm) 0.61 1.065
H (mm) 0.42 0.839
S (mm) 0.2 0.203
T (mm) 0.1 0.102
N (ea.) 62 64
Le (mm) 15.6 18.5
L (mm) 70.0 50.6
Lc (mm) 34.4 32.5
Qin (W) 0–120 0–150
Tv (�C) 60–95 90
Liquid fill (ml) 0.84 0.87
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(4) From 0 to x, calculate the total mass of the liquid in
the grooves, ml, and the vapor, mv. Assume the
remainder of the inner volume of the heat pipe is
filled with liquid of mass mr.

(5) If the overall mass balance condition, ml + mv +
mr = mini, is not satisfied, increase x to x + Dx and
return to step 3.

(6) If the overall mass balance condition is satisfied at a
given value of x, calculate the liquid block length
using Lb = Lt � x, and then solve the energy equa-
tion, Eq. (13), in the liquid block region. If the overall
mass balance condition holds but the wall tempera-
ture gradient at x = Lt is not zero, change the wall
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maximum heat transport rate, and (b) wall temperature.
temperature at x = 0 (if dT w=dxjx¼Lt
< 0, increase

the value of Tw(0) and if dT w=dxjx¼Lt
> 0, decrease

the value of Tw(0)) and return to step 3.
(7) If both the mass balance condition and the wall tem-

perature gradient condition at x = Lt are satisfied,
check the convergence criterion. If the convergence
criterion fails (rc(x = Lt � Lb) 6¼ rh,v), change rc,min

(if rc(x = Lt � Lb) < rh,v, increase the value of rc,min.
and if rc(x = Lt � Lb) > rh,v, decrease the value of
rc,min) and return to step 2.

(8) If the mass balance condition, the wall temperature
gradient condition at x = Lt, and the convergence
condition are all satisfied, regard rc, min as the mini-
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mum capillary radius, for the given input heat load,
Qin.

3. Results and discussion

3.1. Validation

In order to validate the model developed in the present
work, the wall temperature profiles and the maximum heat
transport rate obtained from the model are compared with
experimental data of Hopkins et al. [4] and Lin et al. [5].
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temperature profiles, and (b) averaged wall temperature.
Geometric parameters of the experimental copper-water
heat pipes and other relevant specifications of these exper-
iments are summarized in Table 2. For numerical simula-
tions, grid-independence tests are performed by changing
dx. When the grid points are doubled from 300
(dx = 0.4 mm) in the axial direction, the maximum change
in the velocity and temperature distributions is less than
1%. Therefore, dx is chosen to be 0.4 mm in the present
study. Fig. 5a shows a comparison between the model pre-
dictions and experimental data of Hopkins et al. [4] for the
maximum heat transport rate, and shows a maximum devi-
ation of 5%. On the other hand, the maximum heat trans-
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port rate obtained from the previous model [4] deviates
substantially from the experimental results by over 30%.
Fig. 5b shows a comparison of the model predictions with
the experimental data for wall temperature. The discrep-
ancy between the present model results and the experimen-
tal data is less than 2%.

A comparison of the model predictions and experimen-
tal data in [5] for the wall temperature profiles and the
averaged wall temperatures is shown in Fig. 6. The agree-
ment between the model and experimental results is again
excellent. It is clear that the present model accurately pre-
dicts the wall temperature variation along the axial direc-
tion as well as the maximum heat transport rate obtained
from previous experiments in the literature.
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3.2. Discussion of the validity of commonly used simplifying

assumptions

Fig. 7a illustrates the axial wall temperature profile for
Qin = 100 W and Tv = 90 �C. According to the results from
the present model, the liquid block length in the flat heat
pipe used in the experiments in [4] makes up approximately
58the condenser section. Substantial overcharging of the
working fluid causes a large temperature drop in the liquid
block region, as shown in Fig. 7a. This illustrates that the
temperature drop in the liquid block region cannot be
neglected when the working fluid is overcharged. Thus,
the assumption of a constant wall temperature or the exclu-
sion of wall temperature variation from the analysis, as
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often adopted in past models, may lead to significant errors
in predicting the wall temperature profiles. Profiles of the
heat transfer rate per unit length along the axial direction
are shown in Fig. 7b. As expected, evaporation and con-
densation rates are not uniform, but instead vary along
the axial direction. Even in the so-called adiabatic section,
heat transfer by evaporation or condensation takes place
inside the heat pipe, as also pointed out in [9,10]. The influ-
ence of the solid thermal conductivity on the heat transfer
rate per unit length profiles is evaluated in Fig. 8. The fig-
ure shows that as the solid thermal conductivity decreases,
the evaporation (condensation) rate becomes more uniform
along the axial direction and heat transfer by evaporation
or condensation in the adiabatic section is negligible.
Therefore, the assumption that neither evaporation nor
condensation occurs in the adiabatic section is valid only
if the effect of the axial wall conduction is negligible.
3.3. Effect of the amount of liquid charge

As mentioned above, the increase of the liquid block
length results in a large temperature drop. To examine
the effect of the amount of liquid charge on the thermal
performance of the copper–water flat heat pipe the experi-
mental configurations are chosen to be the same as those of
Hopkins et al. [4]. The filling ratio is defined as the ratio of
the liquid volume to the empty volume inside the heat pipe,
and its original value used in their experiments is 0.4. When
the filling ratio is 0.29, the liquid block length is zero. At
the other extreme, the liquid block length is equal to the
condenser section length for the filling ratio of 0.475. To
evaluate the thermal performance of the heat pipe, the
maximum heat transport rate and the thermal resistance
are chosen as the objective functions. The thermal resis-
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Fig. 8. Profiles of heat transfer rate per unit length profiles with res
tance, R, is defined here as the overall end cap to end cap
temperature drop divided by the input heat load:

R ¼ ðT w; e � T w; cÞ=Qin ð47Þ

Fig. 9 illustrates the effect of the filling ratio on the maxi-
mum heat transport rate, Qmax, and the thermal resistance,
R. As the filling ratio increases, Qmax, increases modestly.
This is because flow friction decreases due to the decrease
in the effective length of the heat pipe. The thermal resis-
tance, on the other hand, shows a more significant increase
with increasing filling ratio. When the filling ratio is 0.475
(Lb = Lc), Qmax is enhanced by approximately 19% com-
pared with that for the filling ratio of 0.29 (Lb = 0). On
the other hand, the thermal resistance is increased by
approximately 160% over the same change in filling ratio.
This means that the larger the filling ratio, the worse is
the thermal performance of the heat pipe. Hence, the ther-
mal performance of the heat pipe is maximized when the
filling ratio is 0.29 (Lb = 0).
3.4. Thermal optimization of the heat pipe

In order to enhance the thermal performance of a heat
pipe, an optimization of the grooved wick structure is per-
formed to obtain the maximum heat transport rate. If the
groove width S is reduced without changing the groove
height H or the number of grooves, the fin thickness T will
increase and the groove will take a narrower profile. This
leads to a higher capillary pumping force. At the same time,
however, the reduction of S causes a reduction of the cross-
sectional area in the groove, which results in higher flow
resistance. If H is increased without changing S or the num-
ber of grooves, the cross-sectional area in the vapor region
will decrease. This leads to higher flow resistance in the
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vapor region. On the other hand, the increase in H causes a
reduction in the flow resistance in the groove because the
additional flow resistance due to the liquid–vapor interfa-
cial shear stress is decreased. These counteracting influences
ultimately contribute to either an increase or a decrease in
the thermal performance of the heat pipe. The effects of
the optimization parameters S and H on the heat pipe per-
formance are evaluated numerically by using the validated
model and are shown in Fig. 10. It should be noted that
Fig. 10. Thermal optimization of the flat heat pipe fo
experimental configurations of Hopkins et al. [4], such as
the wall thickness of the heat pipe, the number of grooves,
and the length of the heat pipe, are not changed in the opti-
mization process. In addition, the initial liquid charge is
chosen to have a value for which there is no excess liquid.
This is because the thermal performance of the heat pipe
is maximized when the liquid block length is zero, as men-
tioned in the previous section. From the results of the ther-
mal optimization, a narrow, deep groove has higher heat
r the maximum heat transport rate (Tv = 90 �C).
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transport rate. For Tv = 90 �C, the maximum heat trans-
port rate is 128 W with the optimum conditions of
S = 0.1437 mm and H = 0.525 mm. The thermal perfor-
mance of the optimized heat pipe can thus be enhanced
by approximately 20% compared with the experimental
results of Hopkins et al. [4].
4. Conclusions

A mathematical model is developed for accurately pre-
dicting the thermal performance of a flat micro heat pipe
with a rectangular grooved wick structure. The effects of
the liquid–vapor interfacial shear stress, the contact angle,
and the amount of liquid charge have been included in the
present model. In particular, the axial variations of the wall
temperature and the evaporation and condensation rates
have been considered by solving the one-dimensional con-
duction equation in the wall and the augmented Young–
Laplace equation, respectively. The results obtained from
the proposed model are in close agreement with published
experimental results [4,5] for the wall temperature profiles
and the maximum heat transport rate. From the validated
model, it was found that the assumptions commonly
employed in previous studies could lead to significant
errors for predicting the thermal performance of the heat
pipe. It is shown that the assumptions that evaporation
and condensation occur uniformly in the axial direction,
that evaporation occurs only in the evaporator section,
and that condensation occurs only in the condenser sec-
tion, are valid only if the axial wall conduction can be
neglected. The effect of the amount of liquid charge on
the thermal performance of the flat heat pipe has also been
examined. As the amount of liquid charge increases, Qmax

increases modestly due to a decrease in the effective heat
pipe length, but the thermal resistance increases much more
rapidly. Finally, the grooved wick structure is optimized
using the proposed model for maximum heat transport rate
with respect to the width and the height of the groove. The
maximum heat transport rate is 128 W under the optimum
conditions of S = 0.1437 mm and H = 0.525 mm for
Tv = 90 �C, which reflects an enhancement of approxi-
mately 20% compared to the experimental result obtained
by Hopkins et al. [4].
Acknowledgement

This work was supported by the Korea Science and
Engineering Foundation (KOSEF) through the Interna-
tional Cooperation Program funded by the Ministry of Sci-
ence and Technology (No. F01-2005-000-10072-0). Part of
this work was conducted while the first and second authors
were on a year-long research visit at Purdue University.
References

[1] International Technology Roadmap for Semiconductor (ITRS) 2005
[online] <http://www.itrs.net/>.

[2] Y. Cao, J.E. Beam, B. Donovan, Air-cooling system for metal oxide
semiconductor controlled thyristors employing miniature heat pipes,
J. Thermophys. Heat Transfer 10 (3) (1996) 484–489.

[3] S.J. Kim, J.K. Seo, K.H. Do, Analytical and experimental investi-
gation on the operational characteristics and the thermal optimization
of a miniature heat pipe with a grooved wick structure, Int. J. Heat
Mass Transfer 42 (2003) 3405–3418.

[4] R. Hopkins, A. Faghri, D. Khrustalev, Flat miniature heat pipes with
micro capillary grooves, ASME J. Heat Transfer 121 (1999) 102–109.

[5] L. Lin, R. Ponnappan, J. Leland, High performance miniature heat
pipe, Int. J. Heat Mass Transfer 45 (2002) 3131–3142.

[6] B.R. Babin, G.P. Peterson, D. Wu, Steady-state modeling and testing
of a micro heat pipe, ASME J. Heat Transfer 112 (1990) 595–601.

[7] J.P. Longtin, B. Badran, F.M. Gerner, A one-dimensional model of a
micro heat pipe during steady-state operation, ASME J. Heat
Transfer 116 (1994) 709–715.

[8] D. Khrustalev, A. Faghri, Thermal analysis of a micro heat pipe,
ASME J. Heat Transfer 116 (1994) 189–198.

[9] U. Vadakkan, J.Y. Murthy, S.V. Garimella, Transient analysis of flat
heat pipes, in: ASME Summer Heat Transfer Conference, July 21–23,
Las Vegas, Nevada, 2003, HT2003-47349.

[10] U. Vadakkan, S.V. Garimella, J.Y. Murthy, Transport in flat heat
pipes at high heat fluxes from multiple discrete sources, ASME J.
Heat Transfer 126 (2004) 347–354.

[11] P.C. Wayner Jr., The effect of interfacial mass transport on flow in
thin liquid films, Colloids Surf. 52 (1991) 71–84.

[12] P.C. Wayner Jr., K.Y. Kao, L.V. LaCroix, The interline heat transfer
coefficient of an evaporating wetting film, Int. J. Heat Mass Transfer
19 (1976) 487–492.

[13] F.M. White, Viscous Fluid Flow, McGraw-Hill, 1991.
[14] G.E. Schneider, R. DeVos, Nondimensional analysis for the heat

transport capability of axially-grooved heat pipes including liquid/
vapor interaction, AIAA Paper, 1980, No. 80-0214.

[15] S. Moosman, G.M. Homsy, Evaporating menisci of wetting fluids, J.
Colloid Interf. Sci. 73 (1) (1980) 212–223.

[16] B.V. Derjaguin, Z.M. Zorin, Optical study of the adsorption and
surface condensation of vapours in the vicinity of saturation on
smooth surface, in: J.H. Schlman (Ed.), Proceedings of the Second
International Conference on Surface Activity, vol. 2, Butterwoods,
London, 1957, pp. 145–152.

[17] F.W. Holm, S.P. Goplen, Heat transfer in the meniscus thin film
transition region, ASME J. Heat Transfer 101 (1979) 543–547.

[18] J. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic
Press Inc., San Diego, CA, 1992.

[19] P.C. Stephan, C.A. Busse, Analysis of the heat transfer coefficient of
grooved heat pipe evaporator walls, Int. J. Heat Mass Transfer 35 (2)
(1992) 383–391.

[20] K.P. Hallinan, H.C. Chebaro, S.J. Kim, W.S. Chang, Evaporation
from an extended meniscus for nonisothermal interfacial conditions,
J. Thermophys. Heat Transfer 8 (4) (1994) 709–716.

[21] D. Khrustalev, A. Faghri, Heat transfer during evaporation on
capillary-grooved structures of heat pipes, ASME J. Heat Transfer
117 (1995) 740–747.

[22] H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an
evaporating thin film in a microchannel, Int. J. Heat Mass Transfer
50 (2007) 3933–3942.

[23] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis,
Washington, 1995.

[24] V.G. Stepanov, L.D. Volyak, Y.V. Tarlakov, Wetting contact angles
for some systems, J. Eng. Phys. 32 (1977) 1000–1003.

http://www.itrs.net/

	A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick
	Introduction
	Mathematical model
	Governing equations
	Determination of the averaged interfacial velocity
	Evaporation region
	Condensation region
	Comparison of results from the model developed to those from Stephan and Busse [19]

	Solution algorithm

	Results and discussion
	Validation
	Discussion of the validity of commonly used simplifying assumptions
	Effect of the amount of liquid charge
	Thermal optimization of the heat pipe

	Conclusions
	Acknowledgement
	References


